Chiba Cluster Naming Conventions & City Model

Chiba Grey Doc #8

Rémy Evard, John-Paul Navarro, Daniel Nurmi

{evard, navarro, nurmi}@mcs.anl.gov

Mathematics and Computer Science Division

Argonne National Laboratory

18 August 1999

Background

This is a short document describing the naming conventions for various portions of the Chiba City cluster project.

Why “Chiba City”?

Chiba City is one of the principle locations of activity in a number of William Gibson novels and short stories, particularly his classic novel, Neuromancer. Chiba is a huge city (although not as huge as the Sprawl), and is a source of all types of technology.

After some deliberation, we consider “Chiba” to be the name of this first large cluster being developed at Argonne. It’s not the name of the clustering project, nor will it probably be the name of the next large cluster. For the moment, until we come up with a new name for the project, it does refer to the activities centered around getting Chiba up and running, but we don’t believe the tools we’re building or the techniques we’re developing should in any way be specific to just this cluster.

The City Metaphor

We’ve used the metaphor of a city in several places in this project. At some point at the very beginning, we started a chart that looked like this:

Nodes
Metaphorical Name

1
House

8
Neighborhood

...
...

32
Town

1024
City

10242
Megaplex

...
ad nauseum.

This exercise soon got a little silly and we stopped it a bit after it got out of hand.

However, we stuck with a few of the units of naming because they’re handy, and then added in some others:

Name
Definition

Node
A single computer.

Town
A group of closely associated computing nodes. This will typically be 32 nodes, but could be fewer or a bit more.

Mayor
A computer responsible for managing the nodes in a town.

City
Up to 32 towns.

City Mayor
A computer responsible for managing the mayors in a city.

Prez

A computer responsible for managing all the city mayors and running the cluster database (which defines the cluster).

At the end of this document, we’ve included a more detailed discussion about how these names are precisely defined and how they relate to each other.

In the 256-node Chiba City, we have the following counts:

· 256 computing nodes.

· 8 computing towns, and thus 8 mayors.

· 1 storage town of 8 storage nodes and 1 mayor.

· 1 visualization town of 32 viz nodes 1 mayor.

· 1 city, which includes all the towns.

· 1 city mayor, which is also the prez.

In the smaller 20 node Compaq cluster, we only have 1 mayor, which also servers as the city mayor and the prez.

Hostnames

Hostnames are an interesting problem.

There’s a certain desire to try to encode lots of information into a hostname: we’ve considered names like c01t01n005. But that’s fairly ugly and gets unwieldy and restrictive. On the other hand, we have no intention of coming up with unique names for every node.

Additionally, hostnames are really just aliases for IP addresses. And IP addresses are hard-wired to network interfaces, and thus network types. So a hostname implies something about the way that users are expected to access a machine. This can make a huge difference in how a packet travels to a particular node.

Thus, we’ve made the following policy decisions:

· Hostnames are arbitrary. They don’t mean anything special to the cluster; one shouldn’t read the hostname and then decide something particular about the machine (like what town it’s in, or if it has a particular speed CPU). Instead, the hostname should be looked up in a cluster database, where the database contains that particular information. Commands to do this will be created. (“chi-town <hostname>”, “chi-city <hostname”>, ...)

· Despite the above decision, we will be giving hostnames basically useful names, intended to be helpful to users of the system.

· Hostnames will be set up so that they refer, by default, to the ethernet of the machine. The hostname with an extension of “-hsn” will refer to the fastest interface on the system. (“hsn” means “high speed network”.)

Hostnames for User Systems

User visible systems in Chiba will have base hostnames according to this chart:

Node
Hostname

Computing nodes
ccn1 – ccn256

Viz nodes
ccviz1 – ccviz32

Storage nodes
ccsto1 – ccsto8

Login systems
cclogin1 – cclogin4

The reasoning behind the naming is as follows:

· The “cc” refers to “chiba city”. In a system like Huxley, we would go with “hux”.

· The central string indicates the town purpose. “n” for “nodes”. “sto” for storage. Etc.

· The numbers do not include leading zeroes.

In addition, each system will have hostnames specific to each of its interfaces, using the standard MCS suffix naming convention:

Hostname Suffix
Meaning

-feth
Fast ethernet

-ge
Gigabit ethernet

-myr
Myrinet

-sn
ServerNet II

These are the hostnames that will be returned from a reverse address lookup.

Thus, the first computing node in the system will have the following hostnames:

· ccn1.mcs.anl.gov – the basic hostname and the output of the “hostname” command. It points to the ethernet interface on the system.

· ccn1-hpn.mcs.anl.gov – the hostname for the high performance network on the node, which in this case will be the Myrinet network.

· ccn1-feth.mcs.anl.gov – the hostname that guarantees access to the fast ethernet interface on the system. This is the name that will be returned by DNS when the IP address for fast ethernet is looked up.

· ccn1-myr.mcs.anl.gov - the hostname that guarantees access to the Myrinet interface on the system. This is the name that will be returned by DNS when the IP address for Myrinet is looked up.

Note that this implies that the default route is over ethernet, not Myrinet. One will have to deliberately use the Myrinet, not get lucky and use the Myrinet. We have arranged it this way to keep unwanted traffic of the high performance net, and to point generic traffic at the more reliable ethernet.

This decision has serious implications for users of the system and of the communication libraries, and it is very important that we clearly and repeatedly point it out.

Names for Other Systems

The less-visible systems in Chiba will have more information encoded in them, so that they’re easy to locate and work with:

System
Name

Prez
ccprez

Servers
ccs1 ...

Mayors
cct1m

Ethernet switches
cct1n1 ...

Myrinet switches
cct1s1 ...

Hubs
cct1h1 ...

Power boxes
cct1p1 ...

Racks
cct1r1 ...

Here, the “t” refers to the town number, once again not including leading zeroes. Stickers will be on all the hardware with its name on it.

Cables that go between towns must be labeled on both ends. Each end indicates where the other end goes, including the hardware name of the unit and the port number on the unit.

DHCP

None of these names are hardcoded on the individual nodes. Instead, the first time a node is booted, we capture the ethernet address of the system and then register it with the DHCP server for the cluster. After that, each hostname listed above is statically assigned to that node, such that that piece of hardware will always get the same set of IP addresses and hostnames.

Domains

We thought for a while about whether or not a cluster can span multiple internet domains. This is a trickier issue than it would appear because it affects how nodes are referred to inside of the cluster database.

We’ve decided after some debate that we will not make any special plans to allow clusters to span domains, and that we will assume the clusters all inside of the same domain. If this needs to be changed, it can be tackled at the DNS level.

Cluster Scope

From an administration perspective, a cluster is a single entity because all of the data in it is managed in a single database. (In reality it probably has more to do with networking or something... but this isn’t reality, this is systems administration.) The database has been mentioned several times here, and will be described in detail in other document. But for our purposes, think of it as a table that has an entry for each host in the system, and contains information such as the hostname, the network interfaces, the town and mayor for each host, how to reach it’s power management port, and so on. We believe that we can ensure the database will scale by using a database caching scheme on each of the mayors.

So – because Chiba is a different cluster from the Data Grid Node, they will have different management databases. This seems trivial, but it’s fairly important.

Command Line Naming

We’re developing a number of commands that work with some set of nodes on the cluster. A good example is the “chi-power” command, which is the command-line program used to manage the electrical power to a node. The syntax for this command is:

chi-power {on | off | cycle | check } {nodelist}

Each of the commands like this that operate on a set of nodes should use the same syntax for a set of nodes. The nodelist can be any of:

· A list of hostnames.

· A dynamic alias for a list of hosts. One would do this to tell a user to refer to their nodes with a particular alias, i.e. “+cc1432”, for job 1432. Thus one could do a power or status check of all their nodes without having to individually list them.

· A static alias for a list of hosts. We would define these based on need – “+mayors” or “+viz” are handy aliases, and there are likely to be many others.

· A wildcard mechanism that supports conventions like “ccn10-ccn15” and does the right thing.

This should, of course, all be handled by one library routine that all the commands can reference. The aliases should be looked up in the cluster database.

One can also imagine a command called “chi-nodelist” that takes the nodelist as an argument and prints out the actual hostnames associated with the nodelist, thus one could do something like: rup `chi-nodelist +mayors` .

We may make the nodelist the first argument on the command line, if it turns out that the nodelist is not a variable set of arguments, and that other arguments are.

Cluster Name Lookup

When a command operates on nodes in a cluster, like the “chi-power” command mentioned above, the command gets its data from the cluster database. The cluster database name consists of a hostname and a port, although the port should be a known port number. These commands locate the database using the following algorithm:

· If the “-cluster <cluster>” argument is given on the command line, it uses that cluster.

· Else, if the environment variable CHI_CLUSTER_DB is set, it uses that.

· Else, it goes to the cluster that it was configured to use at install time (presumably in an editable configuration file).

A Note on Command Names

We would like all the programs built as a part of this project to have a consistent naming scheme, and to use a common prefix for their names. This is both to help associate them together as part of a package and to reduce the odds of name collision with other commands. Further, we would like for that prefix to reflect the name of this project, but not this specific cluster.

For example, naming a command “chiba-power” would make sense at the moment, but would feel weird to use on some other cluster. These programs are very definitely designed to work on multiple systems, so going with “chiba-“ would be the wrong approach.

Because the name of the project is still a bit up in the air, we are using “chi-“ as a working prefix. It hints at “chiba”, it’s pronounceable, and “chi-city” is nicely associated with Chicago.

Appendix A: Town and City Hierarchies

Here we more precisely define the various hierarchical portions of these clusters and how they relate to each other. This is largely an academic topic, but may be of some interest in the future.

Definitions

Towns

We’ve planned from the beginning that the cluster would be built in small, identical units, allowing us to scale up the size of the cluster while managing complexity. In this system, a town is defined as “the set of nodes managed by a supervisor computer”.

The supervisor computer is called a mayor.

Towns aren’t specified to be any particular size, although we shoot for 32 nodes and 1 mayor as a reasonable target. 32 is a good number for a town size for a number of reasons: most network services scale to 32 nodes; one can think in terms of 32 nodes reasonable; 32 towns of 32 nodes is 1024 nodes, which is one of the design points.

In the currently planned cluster systems, towns range in size from 8 nodes to 32 nodes.

Cities

A city is a set of mayors collectively managed by a city mayor. The city mayor has the same responsibility to the mayors that the mayors do to their nodes, and also manages city-wide services.

Beyond Cities – Megacity

 We’ve toyed around with appropriate words for the next unit beyond “city”. Some suggestions include: megacity, metropolis, megaplex, and state. None of those are particularly attractive. Fortunately, we don’t have to solve that right now – we’re not likely to get larger than a city for a little while.

While we’re in the realm of the non-existent, one can consider arbitrary scaling of the metaphor. We would do this by using the following definitions:

Level 1 cluster: A single town. This means that one computer is responsible for mayor and prez functions for the town.

Level 2 cluster: A single city. One computer is responsible for city mayor and prez functions for the city; multiple computers are responsible for mayor functions for different towns.

Level 3 cluster: Multiple cities. One computer handles prez functions for the cluster, multiple computers act as city mayors each managing multiple mayors for different towns.

And so on. As long as city mayors can manage city mayors, this scales up arbitrarily. A Level 4 cluster would have a prez running city mayors running city mayors running mayors running nodes.

We would then call a city mayor who manages mayors a “level 2 mayor”, and a city mayor who manages level 2 mayors a “level 3 mayors”, and so on.

Meaning...

This may seem silly to think about, but the point to take from this is:

There is a single prez for a cluster. It handles issues that are unique for the cluster, namely the master copy of a database and naming services.

Mayors manage nodes. Nodes are the computers that users access.

City mayors manage mayors or city mayors. Thus, their functionality is to aggregate information from mayors and pass it up to their managing mayor, or to distribute information down the chain.

� Tip ‘o the hat to Joe Simon, who also created Captain America with Jack Kirby. In Prez, a short, cheesy comic run in the 60s, Prez Rickard was the first teen president of the U.S. The story was later immortalized in Neil Gaiman’s Sandman, issue #54, The Golden Boy.

