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Abstract

DSDP implements the dual-scaling algorithm for semidefinite programming. The source code if this
interior-point solver, written entirely in ANSI C, is freely available. The solver can be used as a subroutine
library, as a function within the MATLAB environment, or as an executable that reads and writes to files.
Initiated in 1997, DSDP has developed into an efficient and robust general purpose solver for semidefinite
programming. Although the solver is written with semidefinite programming in mind, it can also be used
for linear programming and other constraint cones.

The features of DSDP include:

• a robust algorithm with a convergence proof and polynomially bounded complexity under mild
assumptions on the data,

• primal and dual solutions,

• feasible solutions when they exist or approximate certificates of infeasibity,

• initial points that can be feasible or infeasible,

• relatively low memory requirements for an interior-point method,

• sparse and low-rank data structures,

• extensibility that allows applications to customize the solver and improve its performance,

• a subroutine library that enables it to be linked to larger applications,

• scalable performance for large problems on parallel architectures, and

• a well documented interface and examples of its use.

The package has been used in many applications and tested for efficiency, robustness, and ease of use.
We welcome and encourage further use under the terms of the license included in the distribution.
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1 Notation

The DSDP package implements a dual-scaling algorithm to find solutions (Xj , yi, Sj) to linear and semidefinite
optimization problems of the form

(P ) inf
p∑

j=1

〈Cj , Xj〉 subject to
p∑

j=1

〈Ai,j , Xj〉 = bi, i = 1, . . . ,m, Xj ∈ Kj ,

(D) sup
m∑

i=1

bi yi subject to
m∑

i=1

Ai,jyi + Sj = Cj , j = 1, . . . , p, Sj ∈ Kj .

In this formulation, bi and yi are real scalars.

For semidefinite programming, the data Ai,j and Cj are symmetric matrices of dimension nj (Snj ), and
the cone Kj is the set of symmetric positive semidefinite matrices of the same dimension. The inner product
〈C,X〉 := C•X :=

∑
k,l Ck,lXk,l, and the symbol � (�) means the matrix is positive (semi)definite. In linear

programming, Ai and C are vectors of real scalars, K is the nonnegative orthant, and the inner product
〈C,X〉 is the usual vector inner product.

More generally, users specify Cj , Ai,j from an inner-product space Vj that intersects a cone Kj . Using
the notation summarized in Table 1, let the symbol A denote the linear map A : V → Rm defined by
(AX)i = 〈Ai, X〉; its adjoint A∗ : Rm → V is defined by A∗y =

∑m
i=1 yiAi. Equivalent expressions for (P)

and (D) can be written

(P ) inf 〈C,X〉 subject to AX = b, X ∈ K,
(D) sup bT y subject to A∗y + S = C, S ∈ K.

Formulation (P) will be referred to as the primal problem, and formulation (D) will be referred to as the
dual problem. Variables that satisfy the linear equations are called feasible, whereas the others are called
infeasible. The interior of the cone will be denoted by K̂, and the interior feasible sets of (P) and (D) will
be denoted by F0(P ) and F0(D), respectively.

Table 1: Basic terms and notation for linear (LP), semidefinite (SDP), and conic programming.
Term LP SDP Conic Notation

Dimension n n
∑
nj n

Data Space (3 C,Ai) Rn Sn V1 ⊕ . . .⊕ Vp V
Cone x, s ≥ 0 X,S � 0 X,S ∈ K1 ⊕ . . .⊕Kp X,S ∈ K
Interior of Cone x, s > 0 X,S � 0 X,S ∈ K̂1 ⊕ . . .⊕ K̂p X,S ∈ K̂
Inner Product cTx C •X

∑
〈Cj , Xj〉 〈C,X〉

Norm ‖x‖2 ‖X‖F
(∑
‖Xj‖2

)1/2 ‖X‖
Product [x1s1 . . . xnsn]T XS X1S1 ⊕ . . .⊕XpSp XS
Identity Element [1 . . . 1]T I I1 ⊕ . . .⊕ Ip I
Inverse [1/s1 . . . 1/sn]T S−1 S−1

1 ⊕ . . .⊕ S−1
p S−1

Dual Barrier
∑

ln sj ln detS
∑

ln detSj ln detS
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2 Dual-Scaling Algorithm

This section summarizes the dual-scaling algorithm for solving (P) and (D). For simplicity, parts of this
discussion assume that the cone is a single semidefinite block, but an extension of the algorithm to multiple
blocks and other cones is relatively simple. This discussion also assumes that the Ais are linearly independent,
there exists X ∈ F0(P ), and a starting point (y, S) ∈ F0(D) is known. The next section discusses how DSDP

generalizes the algorithm to relax these assumptions.

It is well known that under these assumptions, both (P) and (D) have optimal solutions X∗ and (y∗, S∗),
which are characterized by the equivalent conditions that the duality gap 〈X∗, S∗〉 is zero and the product
X∗S∗ is zero. Moreover, for every ν > 0, there exists a unique primal-dual feasible solution (Xν , yν , Sν)
satisfies the perturbed optimality equation XνSν = νI. The set of all solutions C ≡ {(Xν , yν , Sν) : ν > 0} is
known as the central path, and C serves as the basis for path-following algorithms that solve (P) and (D).
These algorithms construct a sequence {(X, y, S)} ⊂ F0(P )×F0(D) in a neighborhood of the central path
such that the duality gap 〈X,S〉 goes to zero. A scaled measure of the duality gap that proves useful in the
presentation and analysis of path-following algorithms is µ(X,S) = 〈X,S〉/n for all (X,S) ∈ K ×K. Note
that for all (X,S) ∈ K̂ × K̂, we have µ(X,S) > 0 unless XS = 0. Moreover, µ(Xν , Sν) = ν for all points
(Xν , yν , Sν) on the central path.

The dual-scaling algorithm applies Newton’s method to AX = b, A∗y + S = C, and X = νS−1 to
generate

A(X + ∆X) = b, (1)
A∗(∆y) + ∆S = 0, (2)

νS−1∆SS−1 + ∆X = νS−1 −X. (3)

Equations (1)-(3) will be referred to as the Newton equations; their Schur complement is

ν

 〈A1, S
−1A1S

−1〉 · · · 〈A1, S
−1AmS

−1〉
...

. . .
...

〈Am, S
−1A1S

−1〉 · · · 〈Am, S
−1AmS

−1〉

 ∆y = b− νAS−1. (4)

The left-hand side of this linear system is positive definite when S ∈ K̂. In this manuscript, it will sometimes
be referred to as M . DSDP computes ∆′y := M−1b and ∆′′y := M−1AS−1. For any ν,

∆νy :=
1
ν

∆′y −∆′′y

solves (4). We use the subscript to emphasize that ν can be chosen after computing ∆′y and ∆′′y and that
the value chosen for the primal step may be different from the value chosen for the dual step.

Using ∆νy and (3), we get
X(ν) := ν

(
S−1 + S−1(A∗∆νy)S−1

)
, (5)

which satisfies AX(ν) = b. Because X(ν) ∈ K̂ if and only if

C −A∗(y −∆νy) ∈ K̂, (6)

DSDP applies a Cholesky factorization on (6) to test the condition. If X(ν) ∈ K̂, a new upper bound

z̄ := 〈C,X(ν)〉 = bT y + 〈X(ν), S〉 = bT y + ν
(
∆νy

TAS−1 + n
)

(7)

can be obtained without explicitly computing X(ν). The dual-scaling algorithm does not require X(ν) to
compute the step direction defined by (4), so DSDP does not compute it unless specifically requested. This
feature characterizes the algorithm and its performance.
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Either (y, S) or X reduces the the dual potential function

ψ(y) := ρ log(z̄ − bT y)− ln detS (8)

enough at each iteration to achieve linear convergence.

1: Setup data structures and factor Ai.
2: Choose y such that S ← C −A∗y ∈ K̂.
3: Choose an upper bound z̄ and a barrier parameter ν.
4: for k ← 0, . . . , kmax do
5: Monitor solution and check for convergence.
6: Compute M and AS−1.
7: Solve M∆′y = b, M∆′′y = AS−1.
8: if C −A∗(y −∆νy) ∈ K̂ then
9: z̄ ← bT y + ν

(
∆νy

TAS−1 + n
)
.

10: y ← y, ∆y ← ∆νy, µ← ν.
11: end if
12: Select ν.
13: Find αd to reduce ψ, and set y ← y + αd∆νy, S ← C −A∗y.
14: for kk = 1, . . . , kkmax do
15: Compute AS−1.
16: Solve M∆cy = AS−1.
17: Select ν.
18: Find αc to reduce φν , and set y ← y + αc∆c

νy, S ← C −A∗y.
19: end for
20: end for
21: Optional: Compute X using y, ∆y, µ.
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3 Feasible Points, Infeasible Points, and Standard Form

The convergence of the algorithm assumes that both (P) and (D) have an interior feasible region and the
current solutions are elements of the interior. To satisfy these assumptions, DSDP bounds the variables y
such that l ≤ y ≤ u where l, u ∈ Rm. By default, li = −107 and ui = 107 for each i from 1 through
m. Furthermore, DSDP bounds the trace of X by a penalty parameter Γ whose default value is Γ = 1010.
Including these bounds and their associated Lagrange variables xl ∈ Rm, xu ∈ Rm, and r, DSDP solves
following pair of problems:

(PP ) minimize 〈C,X〉 + uTxu − lTxl

subject to AX + xu − xl = b,
〈I,X〉 ≤ Γ,
X ∈ K, xu ≥ 0, xl ≥ 0.

(DD) maximize bT y − Γr
subject to C −A∗y + Ir = S ∈ K,

l ≤ y ≤ u, r ≥ 0.

The reformulations (PP) and (DD) are bounded and feasible, so the optimal objective values to this pair of
problems are equal. Furthermore, (PP) and (DD) can be expressed in the form of (P) and (D).

Unless the user provides a feasible point y, DSDP uses the y values provided by the application (usually
all zeros) and increases r until C −A∗y + Ir ∈ K̂. Large values of r improve robustness, but smaller values
often improve performance. In addition to bounding X, the parameter Γ penalizes infeasiblity in (D) and
forces r toward zero. The nonnegative variable r increases the dimension m by one and adds an inequality
to the original problem. The M matrix treats r separately by storing the corresponding row/column as a
separate vector and applying the Sherman-Morrison-Woodbury formula. Unlike other inequalities, DSDP

allows r to reach the boundary of the cone. Once r = 0, it is fixed and effectively removed from the problem.

The bounds on y add 2m inequality constraints to the original problem; and, with a single exception,
DSDP treats them the same as the constraints on the original model. The lone difference between these
bounds and the other constraints is that DSDP explicitly computes the corresponding Lagrangian variables
xl and xu at each iteration to quantify the infeasibility in (P). The bounds l and u penalize infeasiblity in (P),
force xl and xu toward zero, and prevent numerical difficulties created by variables with large magnitude.

The solution to (PP) and (DD) is a solution to (P) and (D) when the optimal objective values of (P) and
(D) exist and are equal, and the bounds are sufficiently large. DSDP identifies unboundedness or infeasibility
in (P) and (D) through examination of the solutions to (PP) and (DD). Given parameters εP and εD,

• if r ≤ εr, ‖AX − b‖∞/〈I,X〉 > εP , and bT y > 0, it characterizes (D) as unbounded and (P) as
infeasible;

• if r > εr and ‖AX − b‖∞/〈I,X〉 ≤ εP , it characterizes (D) as infeasible and (P) as unbounded.

Normalizing unbounded solutions will provide an approximate certificate of infeasibility. Larger bounds may
improve the quality of the certificate of infeasibility and permit additional feasible solutions, but they may
also create numerical difficulties in the solver.
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4 Iteration Monitor

The progress of the DSDP solver can be monitored by using standard output printed to the screen. The data
below shows an example of this output.

Iter PP Objective DD Objective PInfeas DInfeas Nu StepLength Pnrm

-----------------------------------------------------------------------------------

0 1.00000000e+02 -1.13743137e+05 2.2e+00 3.8e+02 1.1e+05 0.00 0.00 0.00

1 1.36503342e+06 -6.65779055e+04 5.1e+00 2.2e+02 1.1e+04 1.00 0.33 4.06

2 1.36631922e+05 -6.21604409e+03 5.4e+00 1.9e+01 4.5e+02 1.00 1.00 7.85

3 5.45799174e+03 -3.18292092e+03 1.5e-03 9.1e+00 7.5e+01 1.00 1.00 17.63

4 1.02930559e+03 -5.39166166e+02 1.1e-05 5.3e-01 2.7e+01 1.00 1.00 7.58

5 4.30074471e+02 -3.02460061e+01 3.3e-09 0.0e+00 5.6e+00 1.00 1.00 11.36

...

11 8.99999824e+00 8.99999617e+00 1.1e-16 0.0e+00 1.7e-08 1.00 1.00 7.03

12 8.99999668e+00 8.99999629e+00 2.9e-19 0.0e+00 3.4e-09 1.00 1.00 14.19

The program will print a variety of statistics for each problem to the screen.
Iter the iteration number.

PP Objective the upper bound z̄ and objective value in (PP).

DD Objective the objective value in (DD).

PInfeas the primal infeasiblity in (P) is ‖xu − xl‖∞.

DInfeas the dual infeasibility in (D) is the variable r.

Nu the barrier parameter ν.

StepLength the multiple of the step-directions in (P) and (D).

Pnrm the proximity to the central path: ‖∇ψ‖M−1 .
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5 DSDP with MATLAB

Additional help using the DSDP can be found by typing help dsdp in the directory DSDP5.X. The command

> [STAT, y, X] = dsdp(b, AC)

attempts to solve the semidefinite program by using a dual-scaling algorithm. The first argument is the
objective vector b in (D) and the second argument is a cell array that contains the structure and data for
the constraint cones. Most data has a block structure, which should be specified by the user in the second
argument. For a problem with p cones of constraints, AC is a p × 3 cell array. Each row of the cell array
describes a cone. The first element in each row of the cell array is a string that identifies the type of cone.
The second element of the cell array specifies the dimension of the cone, and the third element contains the
cone data.

5.1 Semidefinite Cones

If the jth cone is a semidefinite cone consisting of a single block with n rows and columns in the matrices,
then the first element in this row of the cell array is the string ’SDP’ and the second element is the number
n. The third element in this row of the cell array is a sparse matrix with n(n+1)/2 rows and m+1 columns.
Columns 1 to m of this matrix represent the constraints A1,j , . . . , Am,j for this block and column m + 1
represents Cj .

The square symmetric data matrices Ai,j and Cj map to the columns of AC{j, 3} through the operator
dvec(·) : Rn×n → Rn(n+1)/2, which is defined as

dvec(A) = [a1,1 a1,2 a2,2 a1,3 a2,3 a3,3 . . . an,n]T .

In this definition, ak,l is the element in row k and column l of A. This ordering is often referred to as
symmetric packed storage format. The inverse of dvec( ) is dmat(·) : Rn(n+1)/2 → Rn×n, which converts
the vector into a square symmetric matrix. Using these operations,

Ai,j = dmat(AC{j, 3}(:, i)), Cj = dmat(AC{j, 3}(:, m + 1))

and
AC{j, 3} = [ dvec(A1,j) . . . dvec(Am,j) dvec(Cj) ];

For example, the problem:

Maximize y1 + y2

Subject to
[

1 0
0 0

]
y1 +

[
0 0
0 1

]
y2 �

[
4 −1
−1 5

]
can be solved by:

> b = [ 1 1 ]’;
> AAC = [ [ 1.0 0 0 ]’ [ 0 0 1.0 ]’ [ 4.0 -1.0 5.0 ]’ ];
> AC{1,1} = ’SDP’;
> AC{1,2} = [2];
> AC{1,3} = sparse(AAC);
> [STAT,y,X]=dsdp(b,AC);
> XX=dmat(X{1});

The solution y is the column vector y’ = [ 3 4 ]’ and the solution X is a p × 1 cell array. In this case,
X = [ 3 x 1 double ], X{1}’=[ 1.0 1.0 1.0 ], and dmat(X{1})=[ 1 1 ; 1 1 ].

Each semidefinite block can be stated in a separate row of the cell array; only the available memory on
the machine limits the number of cones that can be specified.
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Each semidefinite block may, however, be grouped into a single row in the cell array. To group these
blocks together, the second cell entry must be an array of integers stating the dimension of each block. The
data from the blocks should be concatenated such that the number of rows in the data matrix increases
whereas the number of columns remains constant. The following lines indicate how to group the semidefinite
blocks in rows 1 and 2 of cell array AC1 into a new cell array AC2

> AC2{1,1} = ’SDP’;
> AC2{1,2} = [AC1{1,2} AC1{2,2}];
> AC2{1,3} = [AC1{1,3}; AC1{2,3}]

The new cell array AC2 can be passed directly into DSDP. The advantage of grouping multiple blocks together
is that it uses less memory – especially when there are many blocks and many of the matrices in these blocks
are zero. The performance of DSDP measured by execution time, will change very little.

This distribution contains several examples files in SDPA format. A utility routine called readsdpa( · )
can read these files and put the problems in DSDP format. They may serve as examples on how to format an
application for use by the DSDP solver. Another example can be seen in the file maxcut( · ) , which takes
a graph and creates an SDP relaxation of the maximum cut problem from a graph.

5.2 LP Cones

A cone of LP variables can specified separately. For example a randomly generated LP cone AT y ≤ c with
3 variables y and 5 inequality constraints can be specified in the following code.

> n=5; m=3;
> b = rand(m,1);
> At=rand(n,m);
> c=rand(n,1);
> AC{1,1} = ’LP’;
> AC{1,2} = n;
> AC{1,3} = sparse([At c]);
> [STAT,y,X]=dsdp(b,AC);

Multiple cones of LP variables may be passed into the DSDP solver, but for efficiency reasons, it is best to
group them all together. This cone may also be passed to the DSDP solver as a semidefinite cone, where the
matrices Ai and C are diagonal. For efficiency reasons, however, it is best to identify them separately as
belonging the the cone of ’LP’ variables.

Although y variables that are fixed to a constant can be preprocessed and removed from a model, it is
often more convenient to leave them in the model. It is more efficient for to identify fixed variables to DSDP

than to model these constraints as a pair of linear inequalities. The following example sets variables 1 and
8 to the values 2.4 and −6.1, respectively.

> AC{j,1} = ’FIXED’; AC{j,2} = [ 1 8 ]; AC{j,3} = [ 2.4 -6.1 ];

The corresponding variables x to these constraints may be positive or negative.

5.3 Solver Options

There are more ways to call the solver. The command

> [STAT,y,X] = DSDP(b,AC,OPTIONS)

specifies some options for the solver. The OPTIONS structure may contain any of the following fields that
may significantly affect the performance of the solver. Options that affect the formulation of the problem
are:
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r0 initial value for r in (DD). If r0 < 0, a heuristic will select a very large
number ( 1e10). IMPORTANT: To improve convergence, use a smaller
value. [default -1 (Heuristic)].

zbar an upper bound z̄ on the objective value at the solution [default 1.0e10].

penalty penalty parameter Γ in (DD) that enforces feasibility in (D). IMPORTANT:
This parameter must be positive and greater than the trace of the solution
X of (P). [default 1e8].

boundy determines the bounds l and u on the variables y in (DD). That is, −boundy =
l ≤ yi ≤ u = boundy for all i. [default: 1e7].

Fields in the OPTIONS structure that affect the stopping criteria for the solver are:

gaptol tolerance for duality gap as a fraction of the value of the objective functions
[default 1e-6].

maxit maximum number of iterations allowed [default 1000].

steptol tolerance for stopping because of small steps [default 1e-2].

pnormtol ‖P (ν)‖ of solution should also be less than [default 1e30].

inftol the value r in (DD) must be less than this tolerance to classify the final
solution of (D) as feasible. [default 1e-8].

dual bound Terminate the solver when it finds a feasible point of (D) with an objective
greater than this value. (Helpful in branch-and-bound algorithms.) [default
1e+30].

Fields in the OPTIONS structure that affect printing are:

print = k to display output at each k iteration, else = 0 [default 10].

logtime =1 to profile the performance of DSDP subroutines, else =0. (Assumes
proper compilation flags.)

cc add this constant the objective value. This parameter is algorithmically
irrelevant, but it can make the objective values displayed on the screen
more consistent with the underlying application [default 0].

Other fields recognized in OPTIONS structure are:

rho to set the potential parameter ρ in the function (8) to this multiple of the
conic dimension n. [default: 3] IMPORTANT! Increasing this parameter
to 4 or 5 may significantly improve performance.

dynamicrho to use dynamic rho strategy. [default: 1].

bigM if > 0, the variable r in (DD) will remain positive (as opposed to nonega-
tive). [default 0].

mu0 initial barrier parameter ν. [default -1: use heuristic]

reuse sets a maximum on the number of times the Schur complement matrix can
be reused. Larger numbers reduce the number of iterations but increase
the cost of each iteration. Applications requiring few iterations (¡60) should
consider setting this parameter to 0. [default: 4]
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For instance, the commands

> OPTIONS.gaptol = 0.001;
> OPTIONS.boundy = 1000;
> OPTIONS.rho = 5;
> [STAT,y,X] = DSDP(b,AC,OPTIONS);

asks for a solution with approximately three significant digits, bound the y variables by −1000 and +1000,
and use a potential parameter ρ of 5 times the conic dimension. Some of these fields, especially rho, r0, and
ybound can significantly improve performance of the solver.

Using a fourth input argument, the command

> [STAT,y,X] = DSDP(b,AC,OPTIONS,y0);

specifies an initial solution y0 in (D). The default starting vector is the zero vector.

5.4 Solver Performance and Statistics

The second and third output arguments return objective values for (D) and (P), respectively.

The first output argument is a structure with several fields that describe the solution of the problem:

stype PDFeasible if the solutions to both (D) and (P) are feasible, Infeasible
if (D) in infeasible, and and Unbounded if (D) is unbounded.

obj an approximately optimal objective value.

pobj objective value of (PP).

dobj objective value of (DD).

stopcode equals 0 if the solutions to (PP) and (DD) satisfy the prescribed tolerances
and equals nonzero if the solver terminated for other reasons.

Additional fields describe characteristics of the solution:

tracex the trace of the solution X of (P).

r the multiple of the identity element added to C−AT (y) in the final solution
to make S positive definite.

mu the final barrier parameter (ν).

ynorm the largest element of y (infinity norm).

boundy the bounds placed on the magnitude of each variable y.

penalty the penalty parameter Γ used by the solver, which must be greater than
the trace of the variables X in (P). (see above).

Additional fields provide statistics from the solver:

iterations number of iterations used by the algorithm.

pstep the final step length.in (PP)

dstep the final step length in (DD).

pnorm the final value ‖P (ν)‖.
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rho the potential parameter (as a multiple of the total dimension of the cones).

gaphist a history of the duality gap.

infhist a history of the variable r in (DD).

datanorm the Frobenius norm of C, A and b.

DSDP has also provides several utility routines. The utility derror( · ) verifies that the solution satisfies
the constraints and that the objective values (P) and (D) are equal. The errors are computed according to
the the standards of the DIMACS Challenge[7].
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A Brief History

DSDP began as a specialized solver for combinatorial optimization problems. Over the years, improvements
in efficiency and design have enabled its use in many applications. Below is a brief history of DSDP.

1997 At the University of Iowa the authors release the initial version of DSDP. It solved the semidefinite
relaxations of the maximum cut, minimum bisection, s-t cut, and bound constrained quadratic problems
[6].

1999 DSDP version 2 increased functionality to address semidefinite cones with rank-one constraint matrices
and LP constraints [5]. It was used specifically for combinatorial problems such as graph coloring,
stable sets [2], and satisfiability problems.

2000 DSDP version 3 was a preliminary implementation of a general purpose SDP solver that addressed
applications from the Seventh DIMACS Implementation Challenge on Semidefinite and Related Opti-
mization Problems [7]. It ran in serial and parallel [1].

2002 DSDP version 4 added new sparse data structures to improve efficiency and precision. A Lanczos based
line search and efficient iterative solver were added. It solved all problems in the SDPLIB collection
that includes examples from control theory, truss topology design, and relaxations of combinatorial
problems [3].

2004 DSDP version 5 [4] features a new efficient interface for semidefinite constraints, a corrector direction,
and extensibility to structured applications in conic programming. Existence of the central path was
ensured by bounding the variables. New applications from computational chemistry, global optimiza-
tion, and sensor network location motivated the improvements in efficiency in robustness.
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