
Petascale Algorithms for Reactor Hydrodynamics

Paul Fischer, James Lottes, David Pointer, and Andew Siegel

Argonne National Laboratory, Argonne, IL 60439, U.S.A.

E-mail: fischer@mcs.anl.gov

Abstract. We describe recent algorithmic developments that have enabled large eddy
simulations of reactor flows on up to P = 65, 000 processors on the IBM BG/P at the Argonne
Leadership Computing Facility.

1. Introduction
Petascale computing is expected to play a pivotal role in the design and analysis of next
generation nuclear reactors. Argonne’s SHARP project is focused on advanced reactor
simulation, with a current emphasis on modeling coupled neutronics and thermal-hydraulics
(TH). The TH modeling comprises a hierarchy of computational fluid dynamics approaches
ranging from detailed turbulence compuations, using DNS (direct numerical simulation) and
LES (large eddy simulation), to full core analysis based on RANS (Reynolds-averaged Navier-
Stokes) and subchannel models. Our initial study is focused on LES of sodium-cooled fast
reactor cores. The aim is to leverage petascale platforms at DOE’s Leadership Computing

Figure 1. Turbulence in wire-wrapped subassemblies visualized by axial velocity distributions.
Periodic boundary conditions applied over a single pitch, z ∈ [0, H], are used for the 19-pin case
(left) while inflow/outflow conditions at z = 0/3H are used for the 7-pin case (right). Transition
to turbulence from a uniform inlet flow occurs at z < H/2 in the 7 pin case (lower right).

Facilities (LCFs) to provide detailed information about heat transfer within the core and to
provide baseline data for less expensive RANS and subchannel models [5].

Figure 1 shows recent simulations of turbulent coolant flow in 19- and 7-pin assemblies.
Coolant passes through interior flow channels between the pins and through exterior edge and
corner channels between the pins and the walls. The pins are separated by helically-wrapped
spacer wires that also divert flow between channels and enhance mixing. Questions to be
answered by these initial studies include the degree of cross-assembly mixing induced by the
spacer wires, the amount of bypass flow in the edge channels, and the magnitude of the pressure
drop through the assembly. These fine-scale simulations are providing data and physical insight
previously accessible only through experiment.

LES of full or even partial subassemblies is challenging. For pin diameter D, the hydrualic
diameter for an interior channel is Dh ≈ 0.4D. The wire pitch is H ≈ 60Dh, which is much
longer than the correlation length at typical Reynolds numbers, Reh := UDh/ν ≈ 50, 000.
The number of channels is roughly twice the number of pins and the domain length is ≈ 10H.
Thus, for a 217-pin subassembly one is faced with LES in a channel of length equivalent to
≈ 400×10×60Dh = 240000Dh. Fortunately, this figure can be reduced by exploiting symmetries.
In particular, the relatively short entrance length (< 60Dh, cf. Fig. 1) for these flows permits
the use of axial periodicity such that one only needs to simulate a single wire pitch. Even with
periodicity, the range of scales encountered in a single subassembly has driven the computational
requirements for our LES code, Nek5000, to unprecedented levels.

In the remainder of this note, we describe recent algorithmic advances that are enabling
scalable simulations on the DOE’s new petascale architectures.

2. Petascale Flow Solvers
Our large eddy simulations are based on the spectral element code, Nek5000, which has been
designed from the outset for distributed memory platforms. The spectral element method (SEM)
combines the geometric flexibility of finite elements with the minimal numerical dispersion and
dissipation of spectral methods, making it ideally suited to LES in large complex domains,
where one is interested in accurate propagation of the principal energy carrying eddies over long
times. In the SEM, the solution within each of E elements is represented as a tensor-product of
Nth-order Lagrange polynomials based on the Gauss-Lobatto-Legendre nodal points, resulting
in n ≈ EN3 degrees of freedom per scalar field. Our current LES formulation relies on slight
(resp., 1.25 and 5%) filtering of modes k=N -1 and N , which provides an energy drain at the
unresolved grid scale. In well-resolved regions, the action of the filter is void and spectral
accuracy is retained.

The principal computational bottleneck in simulating unsteady incompressible and low-Mach
number flows is the elliptic problem governing the pressure, which must be computed implicitly
at each timestep. For large unstructured problems, the resultant discrete Poisson problem is
most efficiently solved using multilevel iterative methods embedded within a Krylov subspace
projection scheme such as conjugate gradients or GMRES. For the SEM, we employ variational
multigrid using local overlapping Schwarz methods for element-based smoothing at resolution
N and ≈ N/2, coupled with a global coarse-grid problem based on linear elements. (A detailed
description of our solver can be found in [2, 3].)

The coarse-grid problem is a well-known impediment to scalability. In the past, we have used
a projection-based scheme to solve the coarse problem Ax = b. If A is sparse symmetric positive
definite, then there exists a quasi-sparse matrix X with O(nα) nonzeros, 1 < α < 2 such that
x = XXT b. For linear finite element discretizations of the 3D Poisson problem, one can compute
x with a P -processor work complexity of Ta ≈ 10n5/3/P and a communication complexity
involving only 2 log2 P contention-free messages of length ≤ 5n2/3 [6]. While this highly
parallel and communication-minimal scheme has been quite effective for (P, n) < (104, 105)

its superlinear costs are ultimately limiting and we have recently turned to algebraic multigrid
(AMG) as an alternative.

Our AMG approach is guided by the two-grid asymptotic convergence rate, equal to the
spectral radius of the error propagation matrix ρ((I−BA)(I−PA−1

c P T A)), where the (AMG)
coarse operator is Ac = P T AP . Here we see that the iteration is determined by the choice of
smoother, B, and by the choice of the n × nc prolongation matrix, P . P is further constrained
by specifying that the coarse “C-variables” be a subset of the original variables. Ordering these
variables last gives rise to the block forms

A =

(

Aff Afc

Acf Acc

)

, P =

(

W
I

)

, B =

(

B̂ff 0
0 0

)

.

The key components of the AMG scheme are the choice of the C-variables, the prolongation
weights (W), and the smoother. (We discuss the form of B below.)

We take κ(D
−1/2

ff AffD
−1/2

ff) to be a measure of coarsening quality, as it determines both the
support required for the prolongation weights and the number of smoothing steps required. Our
coarsening procedure assigns coarse variables in order to eliminate the maximal Gershgorin disc

radii of D
−1/2

ff AffD
−1/2

ff − I, where Dff is the diagonal of Aff . The procedure stops once the a
priori bound on the quality measure is below some tolerance.

Our prolongation weights are based on the energy-minimizing interpolation of Wan, Chan,
and Smith [7], which is the solution to a constrained minimization problem that may be viewed
as a tractable proxy to the problem of minimizing the departure of W from the minimal energy
weights, −A−1

ff Afc, given a sparsity pattern on W . We determine the supports in a spirit similar

to sparse approximate inverse (SAI) preconditioners by locally approximating the columns of
A−1

ff Afc and widening the support until the approximation is accurate to a given tolerance. For

the smoother, B̂ff , we choose diagonal SAI accelerated in a Chebyshev polynomial (typically of
degree 2 or 3). The choice of using “F-relaxation” was motivated by the fact that no additional
benefit may come from using a full smoother in a two-level asymptotic convergence rate analysis
and that, by approximately solving equations governed by Aff , one may legitimately employ
Krylov subspace (e.g., Chebyshev) acceleration.

The success of our AMG solver derives from its robust convergence properties (overall
convergence is the same as with the direct XXT solver) and the rapid reduction in the work
with each level of the V -cycle. For the 19-pin case of Fig. 1, which starts with 120 million
points, the AMG grid sizes are: 417600, 267100, 83346, 37097, 19339, 7912, 2237, 459, 92, 15,
2, and 1. The challenge for AMG is to minimize communication overhead, as we discuss below.

Significant improvements in scalability derived from rewriting our central communication
kernel, gs(), which implements the interface exchange (gather-scatter) between spectral
elements. The gs() kernel is a general-purpose utility for implementing parallel matrix-vector
products with a particularly lightweight interface. In a setup phase, one invokes gs handle =
gs setup(glo num,np), where glo num() is a local list of np integers containing a global identifier
(e.g., column number) for each entry. For any repeated entries in glo num() (locally or on other
processors) the call gs(gs handle, u,’+’), will return the sum of the corresponding elements of
u. In short, if Q is an arbitrary Boolean matrix, gs() implements the symmetric operation QQT

[1]. The code supports as its last argument any commutative/associative operator as well as a
mode for vector fields of arbitrary dimension. The new setup routine discovers interprocessor
connections using binning, which is implemented using a crystal-router- (CR-) based all-to-all
communication [4]. The CR strategy is simply stated. Any processor p < P/2 having data
needed by any processor q ≥ P/2 sends its data to p + P/2. Processors in the upper half
reciprocate. One then bisects the processor set and recurs, and the exchange terminates after

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 1 10 100 1000 10000 100000 1e+06 1e+07

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Number of columns of Q requiring communication

GS Times: BG/P=32768, E=396576, n=519823656

’pairwise’ u 1:4
’crystal’ u 1:4

’all_reduce’ u 1:4
 0

 0.2

 0.4

 0.6

 0.8

 1

 65536 32768 16384 8192 4096

ef
fic

ie
nc

y
&

 c
oa

rs
e-

so
lv

e-
fr

ac
tio

n

P

Nek5000-BG/P: Strong Scaling

eff. n=120M
eff. n=471M
eff. n=520M

eff. model
crsl n=120M
crsl n=471M
crsl n=520M

Figure 2. Nek5000 performance on BGP: (left) per-call communication costs for several
implementations of the gs() kernel versus number of nontrivial columns for the case P = 32768;
(right) efficiency and coarse solve fraction for problems with n=120M, 470M, and 520M
gridpoints.

log2 P phases. With this strategy, gs setup() requires ≈ .09 seconds for n=150 million on 32768
processors of BG/L. (We remark that the stand-alone gs() code is available from the authors.)

While robust, general, and easy to use, gs() was originally designed for nearest-neighbor
communications—effectively, Q sparse—and relied exclusively on pairwise processor exchanges
to swap edge and face data. AMG, which also requires general unstructured communication,
can have stencil widths of several hundred at the intermediate levels. A pairwise exchange
strategy in this case would require hundreds of messages and suffer significant latency. To this
end, we have restructured gs() to support several exchange strategies within the same interface
and with the chosen strategy determined by a test that is invoked automatically at setup. In
addition to pairwise exchanges, gs() now supports all reduce()- and CR-based exchanges. The
former approach simply puts the entries from each processor onto a null-vector of length n
and then condenses the result using the native MPI all reduce(). This is very fast on BG/P,
which has a dedicated tree network for this task. The latter approach employs the CR scheme
described above, with condensation taking place whenever shared values collide at intermediate
stages. Figure 2, left, shows the performance envelope for the three strategies as a function of
the number of columns of Q having more than one entry, taken over all calls to gs setup() for
the 7-pin configuration of Fig. 1 with N=11. While the plot does not indicate the (important)
multiplicity of each column of Q, it nonetheless gives some insight to the communication patterns.
In particular, pairwise is generally fastest for the large sparse Qs, while all reduce() is superior
for the smallest systems and CR is optimal in the middle range.

3. Parallel Scaling on BG/P
Strong scaling studies were performed for models shown in Fig. 1. Case 1 is the 19-pin model
with E=359424 and N=7, corresponding to n=120 million points. Case 2 is the same model,
but with N=11 (n=471 million) and Case 3 is the 7-pin × 3-pitch inflow/outflow configuration,
with E = 396576 and N=11 (n=520 million). Each case is run for 100 timesteps without I/O.

Table 1 gives a detailed breakdown of the parallel overhead for Case 1. Reported times are:

Table 1. BG/P solution times (seconds) for 19-pin case, N = 7

Case Total QQT Coarse all reduce()
x4096 1994 125 1180 1.2
a4096 1112 125 192 1.4
b4096 846 126 25 1.
8192 460 88 22 1.

16384 266 64 20 1.

total; nearest-neighbor (QQT) exchanges for the SEM, including the N/2 multigrid exchanges;
coarse-grid solve; and all vector reductions. The entry x4096 uses the XXT solver, while a4096
uses a variant of the AMG solver which selects between the pairwise gs() exchange or all reduce()
to optimize the AMG communication. The entries b4096 and below are for the current scheme,
which enters a third communication option in the mix, namely, the crystal router() routine.

Parallel efficiencies (Fig. 2, right) are derived from from the solution-time model, T (P) =
Ws + Wp/P . For any value of P , given T (P) and T (P/2), one can estimate the serial-to-parallel
work ratio Wsp := Ws/Wp, from which the efficiency is ηp = (1 + Wsp)/(1 + PWsp). For Case 1,
Wsp ≈2.72e-5, based on an average over runs on 1, 2, 4, and 8 racks, with 4096 cores/rack. For
Case 2, Wsp ≈1.17e-5, based on 4, 8, and 16 racks. For Case 3, Wsp ≈7.74e-6, based on 4 and
8 racks. At P=32768, Case 1 achieves roughly 50% efficiency, which is in fact reasonable given
that n/P is only ≈ 3700 in this case. Case 2 sustains roughly 50% efficiency at P=65536 with
n/P ≈ 7300 and Case 3 realizes 80% efficiency for P=32768 with n/P ≈ 15870. The fraction of
time spent in the coarse grid is < 20% for all cases.

4. Conclusion
We have presented algorithmic and performance considerations for petascale simulations of
incompressible flows. Computations on the ALCF BG/P are already yielding important results
in the analysis of reactor core flows, including establishment of core entry lengths.

Acknowledgments
This work was supported by the U.S. Dept. of Energy under Contract DE-AC02-06CH11357.
Computer time on the Argonne Leadership Computing Facility was provided through a 2008
DOE Office of Science INCITE Award. We thank Hank Childs and David Bremer from the
LLNL VisIt group for assistance with graphics and data analysis Scott Parker at the ALCF for
assistance with BG/P, and Stefan Kerkemeier of ETH, Zurich, for code development effort.

References

[1] Deville, M., Fischer, P., and Mund, E. (2002) High-order methods for incompressible fluid flow, Cambridge
University Press.

[2] Fischer, P. and Lottes, J. (2004) In R. Kornhuber, R. Hoppe, J. Priaux, O. Pironneau, O. Widlund, and J.
Xu, (ed.), Domain Decomposition Methods in Sci. and Eng., : Springer, Berlin.

[3] Fischer, P., Loth, F., Lee, S., Smith, D., and Bassiouny, H. (2007) Comput. Methods Appl. Mech. Engrg. 196,
3049–3060.

[4] Fox, G. C., Johnson, M. A., Lyzenga, G. A., Otto, S. W., Salmon, J. K., and Walker, D. W. (1988) Solving
Problems on Concurrent Processors, Prentice-Hall, Englewood Cliffs, NJ.

[5] Pointer, W., Fischer, P., Siegel, A., and Smith, J. (2008) In Proc. of the Int. Congress on Advances in Nuclear
Power Plants, Anaheim, CA : Paper 8252.

[6] Tufo, H. and Fischer, P. (2001) J. Parallel Distrib. Comput. 61, 151–177.
[7] Wan, W. L., Chan, T. F., and Smith, B. (1999) SIAM J. on Sci. Comp. 21(4), 1632–1649.

